Plasmonic Marangoni forces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic manipulation via Marangoni forces

A convective flow system is engendered when two liquid droplets, or a liquid droplet and a solid surface, are maintained at different temperatures. Such flows give rise to Marangoni forces which under proper conditions prevent droplet coalescence, cause fluid motion, and dewetting. We present a study of adsorbed and applied fluid movement on a solid surface driven by surface tension gradients c...

متن کامل

Marangoni forces created by surface plasmon decay.

We present optical microfluidic manipulation of silicone oil and glycerol via surface tension driven forces sustained by surface plasmon deexcitation energy. The phonon energy associated with the decaying optically excited surface plasmons in a thin gold foil creates thermal gradients capable of actuating fluid flows. Spectral dependence of the plasmon decay length and control of optical beam c...

متن کامل

Thermophoresis in colloidal suspensions driven by Marangoni forces.

In a hydrodynamic approach to thermophoretic transport in colloidal suspensions, the solute velocity u and the solvent flow v(r) are derived from Stokes' equation, with slip boundary conditions imposed by thermal Marangoni forces. The resulting fluid velocity field v(r) significantly differs from that induced by an externally driven particle. We find, in particular, that thermophoresis due to s...

متن کامل

Optical forces in hybrid plasmonic waveguides.

We demonstrate that in a hybrid plasmonic system the optical force exerted on a dielectric waveguide by a metallic substrate is enhanced by more than 1 order of magnitude compared to the force between a photonic waveguide and a dielectric substrate. A nanoscale gap between the dielectric waveguide and the metallic substrate leads to deep subwavelength optical energy confinement with ultralow mo...

متن کامل

Nanoparticle movement: plasmonic forces and physical constraints.

Nanoparticle structures observed in aberration-corrected electron microscopes exhibit many types of behavior, some of which are dominated by intrinsic conditions, unrelated to the microscope environment. Some behaviors are clearly driven by the electron beam, however, and the question arises as to whether these are similar to intrinsic mechanisms, useful for understanding nanoscale behavior, or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Optical Society: Rapid Publications

سال: 2006

ISSN: 1990-2573

DOI: 10.2971/jeos.2006.06030